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ABSTRACT 

Topologically massive SU(N) gauge theories are studied by using the 

loop expansion in Landau gauge. Ward identities for infinitesimal and 

topologicslly non-trivial gauge transformations are derived, and checked 

to one loop order. The renormslized propagators and vertices are shown 

to be well behaved about zero momentum to arbitrary order in 

perturbation theory. we also establish that only massive states 

contribute to the discontinuities of physical amplitudes. 
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I. INTRODUCTION 

There are dynamics possible for gauge theories in an odd number of 

space-time dimensions which are not open to those in an even number. In 

three dimensions, a Chern-Simons term can be added to the fundamental 

action for a gauge field. 
l-11 

The Chern-Simons term has a coupling which 

scales like a mass, but unlike the ways in which gauge fields are 

usually given a mass, no gauge symmetry is broken by its introduction, 

although parity is. 

The Chern-Simons term has topological significance. For a 

non-sbelisn gauge group, if the theory is to be invariant under certain 

large gauge transformations, which are not continuously deformable to 

the identity, the ratio of the Cherm-Simons mass, m, and the gauge 

2 
coupling, g , must be quantized: 4,5 4nm/g2 = an integer. 

In this work we study topologicslly massive SU(N) gauge theories in 

the loop expansion. Without the Chern-Simons mass, the loop expansion 

would not get us very far. 
1.12 

The coupling constant g2 has dimensions 

of lnsss, 
2 

so for each order in g , we obtain a factor of -g2/Ji2, where p 

is a momentum characteristic of whatever process we are considering. 

Thus perturbation theory cannot be used to compute in the infrared 

limit, p+O. 

With the Chern-Simons term, however, it seems possible that if we 

choose 4nm/g2 to be a very large integer, and if perturbation theory is 

in fact an expansion in g2/m9 then the infrared behavior should be 

calculable directly, at least in this region of small g2/m. 
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We show that naive expectations are borne out. With the proper 

choice of g=w=, the renormslized propagators and vertices are 

computable, about zero momentum, 88 a power series in g2/m. (We refer to 

this as their being "infrared finite", and give a precise definition 

later.) The physical spectrum starts with N‘-1 gluons degenerate in 

msss, and the only discontinuities of S-matrix elements are from massive 

states. 

These simple conclusions belie a great deal of structure in the 

theory. While the two and three point functions are infrared finite in 

Landau gauge, they are not so in any other covsrisnt gauge. Even in 

Landau weI there are individual diagrams which bring in infrared 

singular terms -g2/Jp2. Infrared finiteness happens in Landau gauge 

because of an infinite number of cancellations, to arbitrarily high 

order in perturbation theory, between such singular contributions. 

These cancellations are not proven diagramsticslly-we do not know how to 

do this-but as the result of a cancellation theorem. The consequences 

of this theorem are quite surprising, considering the ease of.its proof. 

Similarly, to compute on-shell matrix elements, one first 

calculates off-shell quantities. The discontinuities from (unphysical) 

msssless states only disappear as all legs go on mass shell. This, of 

13-17 
course, is typical of gauge theories. What is striking here is how 

the mass shell is approached: the renormslized gluon propagator does 

have a true massive pole on the real axis, but the factor for 

wave-function renormalization is imaginary even at the pole. 

A priori, it is not obvious that a perturbstive analysis should be - 

possible. After all, a customary assumption in perturbation theory is 

that the (dimensionless) coupling constant can be continuously varied. 
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This is not possible here, since g2/m--l/finteger). Nevertheless, we see 

no pathology in any quantity, in any gauge, which indicates a problem 

with the loop expansion per se. At least as far as topologicslly massive 

chromodynsmics is concerned, the usual assumptions about perturbation 

theory appear to be unduly restrictive. 

There is one check of consistency that is particularly important. 

If the renormslized theory is to be invariant under large gauge 

transformations, a certain Ward identity must hold. This relation is 

distinct from those implied by invariance under infinitesimal gauge 

transformations, and so we call it a "topological" Ward identity. This 

topologicsl Ward identity requires the difference between the 

renormalized and the bare value of 4nmlg2 to be an integer. Cslculstio" 

in Landau gauge for a SU(N) gauge theory shows that this difference is 

N, to arbitrary order in g2. Consequently, not only does perturbation 

theory respect the topological Ward identity, but it even knows that the 

number of colors is an integer. 

In Sec. II, we explain what we mean by infrared finiteness, and 

derive the Ward identities. Two and three point functions are computed 

to one loop order in Sec. III. Sec. IV presents the cancellation 

theorem, which leads to a discussion of infrared finiteness to arbitrary 

loop order in Sec. V. The discontinuities of amplitudes occupy Sec. VI. 

In appendix A, we discuss some of the physics of an sbelian theory with 

a Chern-Simon6 mass term, including why it has fractional 

ststistics.18'1g Appendix B examines the unusual way in which 

spontaneous symmetry breaking affects the ms.ss spectrum in a g=w3= 

theory with a Chern-Simons term. Appendix C contains s"me computational 

details necessary to Sec. III. 
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II. THE QUANTUM THEORY 

The lsgrsngian is a sum of three terms, 

L = Lo+ Lm l L 
gauge . 

Lo is the usual action for a non-sbelisn gauge field, 

L tr 
Lo=-2 

(F F") 
P" ' 

F 
!Jv 

= apAv-aYAp+ g [A~,A~I . 

Lm is the Chern-Simons term, 

(2.1) 

(2.2) 

(2.3) 

L = - imcpvhtr , (2.4) m 
(A a A t 5 gA A A ) 

P"k PVJ. 

and L includes the 
g=w= 

gauge-fixing and source terms for covsrisnt 

ww , 

L = - 
w-w 

+ tr (aVA')2 + (aP!)DVn - 2tr(JpA") . 

The ghosts of Fsddeev and Popov contribute 

(api)D% = (ap?)(a'~*) t gfsbc(a'fis)A~ 11' . 

(2.5) 

(2.6) 

The gauge group is SU(N), with a matrix notation: A = A; rs, F = Fs 
IJ Ilv PV 

rs. The ra are sntihermitisn matrices in the fundamental representation: 
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[r" , Tb] = fsbcTc, tr(Tsrb) = - + gab ; 
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the fabc are the structure constants of SU(N). 

The theory is defined in three space-time dimensions, which we take 

to be Euclidean, of signature (++t). The coupling of the Chern-Simon6 

term is imaginary in Euclidean space-time (the mass m of Eq. (2.4) is 

real), and real in Minkowski space-time. This is just like the coupling 

of a 0 term in four dimensions. 

For an odd number of dimensions, the operation of parity, P, can be 

defined ss a reflection in all axes: 

2 3 -2 
7A!Jg-A . v 

The usual gauge field Lsgrsngisn is even under parity, Lo 3 +Lo, but the 

Chern-Simon6 tern is odd, Lm 3 -L m. Two reflections give the identity, 

P‘=+l, which is the analogy, in Euclidean space-time, of PT(snd CPT) 

invariance in Minkowski space-time. Under a gauge transformation, 

AW i Kl-'(l 3 + A ) R . 
gv v 

(2.7) 

Lo is gauge invariant; Lm is not: 



J d3x L,+ J m+% d3x L J d3x c'~' aVtr((aVa)Q-'A,) (2.8) 

where 

+ 8n2 !!$ iw , 
g 
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w=--J 
24n2 

d3x c"'tr (n-l(a~n)n-l(avn)n-‘(axn,]. (2.9) 

The set of gauge transformations is divided into global gauge rotations, 

aPR‘=o * 
and all others, for which we assume that Q(x)+1 as xv+. 

Integrating over global gauge rotations requires the system to have a 

tots1 color charge equal to zero. In this case, AP(x) falls off faster 

than l//xl as x'+, and the second term on the right hand side of 

Eq. (2.8), which is a surface integral, vanishes. 

The last term in Eq. (2.8) does not vanish in general. The w of 

Eq. (2.9) is a winding number, which labels the homotopy class of R(x). 

For continuous Q(x), topology tells us that w is an integer. Deser, 

Jsckiw, and Templeton 435 observed that even if the Lsgrsngisn is not 

gauge invariant, the partition function, exp(-Jd3x L), can be, 

provided that m/g 2 is quantized: 

4% "i = q, 

g 

(2.10) 

q-0,1,2... By convention, m, and so q, are taken to be positive. In 

the perturbative regime, we assume q>>l. 



-8- FERMILAB-Pub-85/66-T 

It does not matter if LO is replaced by bL0 in Eq. (2.1). since by 

resealing A !&, g, and m, b can always be set to 1, without affecting the 

quantization condition of Eq. (2.10). The only exception to this is the 

degenerate case, when b-0. This limit will be of help in Sec. IV in 

establishing a cancellation theorem about the complete theory. 

Quantizing the theory is straightforward. The exact gluon and 

ghost propagators are, in momentum space, 

A 
ab 
TV (P) = gab AJP) , 

(2.11) 

;iab(p2) = 6 ab "h(p2) . 

From Eqs. (2.2) and (2.5), the bare propagators are 

5&s!- SLY--- 
P2 

m EpVk 2 
P ) 

1 

p2+m2 

l $5 
(P2j2 ' 

(2.12) 

p- (p2) E + . (2.13) 

P 

Self-energy terms combine with the bare propagators to give the exact 

ones: 
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Av,,(p) 
-1 

A;;=?P))-~+ n,,,,(p) . 

ii(P2) = 
1 

SP2)P2 

Z(P2) = 1 + %p2) . 
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(2.14) 

(2.15) 

(2.16) 

The analysis of invariance under infinitesimal g=uge 

transformations proceeds in much the same w=Y as for the massless 

theory. 16 
The longitudinal part of the gluon propagator is "Ot 

renormalized, 

P~P~A~JP) * E > 

which means that the gluon self-energy, ll"(P), is transverse in p: 

rIpv(P) = NpyP2 - PpPJne(P2) + m E pvkP x IIJP2) . (2.17) 

The exact gluon propagator is then 

x 

re"(P2)cpy~ 5) . 
P 

(2.18) 

1 

z(p2)(p2+mzen(P2)) 

+$& 

(P2j2 ' 

where 
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Z(p2) = 1 + IIS I 

Zm(p2) = 1 + IIJP2) > 

and 

FERMILAB-Pub-85/66-T 

(2.19a) 

(2.19b) 

(2.19c) 

m 
re”(P2) 

is the renormalized, momentum-dependent "mass." 

Power counting shows that only the gluon self-energy might he 

ultraviolet divergent. By the form of Eq. (2.17), ItS(p2) and lI"Cp 
2 

) are 

free of ultraviolet infinities. Any regulator can be used to compute 

l$JPL SS long SS it respects the symmetries of gauge invariance and 

parity. 

What happens in the infrared is much 1SSS obvious. For 

perturbation theory to make Sense, it is clearly necessary for the 

renormalized propagators and vertices, about zer" mOmenturn, to be 

essentially the same as the bare ones, up to small corrections "g2/m. To 

be precise, we call the propagators "infrared finite" if 

z*z(O), zm=Zm(0), and ~.~(O,, (2.20) 

are all well-defined, and computable as a power series in g2/m: 

(2.21) 

etc. We shall show that the Z's, which are gauge dependent, are 
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infrared finite only in Landau gauge, E-0. Notice that the Z(p)'s, as 

defined, are dimensionless functions, so requiring each Z(O) to obey 

Eq. (2.21) is a much stronger condition than merely requiring that 

Uvv(p) and p2E(p2) be finite as p-Ml. 

The exact three-point functions are 

r$(,,q.r) = igf 
abc 

r Pvk(P.q3=) I 

(2.22) 

Fahc 
X(p,q;r) = -igfabc?X(p,q;r) , 

p+q+r=o. Pbc is 
vvh 

the proper vertex for the coupling of three gluons, 

-abc one with momentum p, Lorentz index p. color index a, and so on. r x 1s 

the ghost-ghost-gluon proper vertex, for a gluon with momentum r, 

Lorentz index X, and color c, etc. We define 14-17 

~X(P,q;r)=Pa~~X(P,q;r) . (2.23) 

At tree level. 

r;;;e(P,q,r) = mevvX+ 6p"(P-q)k + 6vX(q-=)p + dXp(=-P)v . (2.24) 

Fbare 
ox (p,q;r) = doi . 12.25) 

The Ward identity which relates the three-point vertices is 14-17 
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p'qvA$)r (2.26) 

AZ;,,, is the transverse part of the glum propagator. 

We shall establish that these vertices are infrared finite in 

Landau gauge, so for E-O, we can expand them about zero momentum: 

r p”X(P’4’r) = ZgG EpvX + 6p"(P-q)x + 6yX(q-r)p + $kP)J + . . . , 

(2.27) 

Tpv(p,q:r) = z 6 g oh + . . . (2.28) 

as P.4. and r+O. The Ward identity of Eq. (2.26) gives 

III-III re”(0) = $ m . 

(2.29) 

(2.30) 

Eq. (2.29) is the same as in the massless theory; Eq. (2.30) is new, but 

hardly surprising. 

Invariance under infinitesimal gauge transformations can be used to 

derive relations between higher point Green's functions. For example, 

the glum four-point function satisfies the same relation as when m-0. 

The P-odd part of the glum self-energy, lIo(p2)=Zm(P2)-1, is in no way 

constrained by the infinitesimal Ward identities. 
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To derive a topological Ward identity, we rescale the fields and 

couplings so that we obtain a renormalized Lagrangian, L 
lTe* 

, which 

generates the exact Green's functions, at least about zero momentum. 

With 

, 

then 

(2.31) 

L 
I?=* 
m 

- -i Zmm rpYhtr(A~e"avA~e"+ 5 > g Ar"A>ie") , (2.32) 

and similarly for Lie" and Lre" 
gauge' Under a gauge transformation, 

7Ce* 
A-H2 

P 
$- ; all + Aten 

g 

The renormalized partition function is invariant under large gauge 

transformations if 

4s ‘z 
( > 

f 4nzm 
( ) 

Z_2mcq z 
ren . 

g lTC2” g g2 
(2.34) 

4 =en is a (positive) integer, but there is no reason why it should be 

the same integer as the "bare" q of Eq. (2.10). We see that it is only 

through the topological Ward identity, Eq. (2.34), that Zm is related to 

the other renormalization constants of the theory. 
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Topological Ward identities will often arise in a theory with a 

multi-valued action. For example, following Schwinger, 
20 

consider a 

theory of charged particles interacting with (Dirac) magnetic monopoles, 

where the monopoles are viewed as fundamental particles, and not as 

composite entities.21 Then twice the product of the electric **d 

magnetic charges must be integral, for both the renormalized, 2(egJren, 

and bare, ?eg, quantities. 
20 

This is precisely ***10g0us to the 

statement that q ren and q need be integers. Similarly, as 2(eg)ren - Z3 

2=g, the photon's wave-function renormalization constant, Z3, must be a 

rational number;" in the present instance, Zm(ZfZg)2 is a rational 

number. What is striking about topologically massive chromodynamics is 

that we can calculate q,,, and the Z's directly (see. III). As of yet, 

it is not possible to compute Z3 in a field theory of monopoles. 
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III. ONE LOOP ORDER 

Before plunging into calculatio", it helps to isolate which 

diagrams might be infrared singular. We shall discover several 

cancellations, the reason for which will only become clear in Sec. IV. 

There are several ways in which infrared singular terms could 

arise. One is any diagram involving ghosts, since neither the ghost 

propagator, nor the ghost-ghost-gluon vertex, are changed by the 

introduction of the Chern-Simon6 mass term. For the gluon propagator, 

Eq. (2.12), problems will arise from the P-odd part, and the piece 

proportio"al to the gauge-fixing parameter,E. The latter should be 

WOlZSe, since for p*, it is Epppy/!p2)2, versus -cpuxpx/(mp2) for the 

P-odd part. In the three gluon vertex, Eq. (2.24). the P-odd piece is 

m"re dangerous than the P-even, for a factor of momentum in the 

numerator of a loop integral will tend to soften the infrared behavior. 

The ghost self-energy is simplest. It is independent of E, 
1,12 

receiving no contribution from the P-odd part of the virtual gluon 

propagator, and so is infrared finite: 

2 
fi(p2) _ J$ 

/ 

k 'p2-(k.pj2 d3k 

P k2(k+pj2 (k2+m2) 

2. 
P-@ m 

(3.1) 

Except for the tadpole diagram, the contributions to the gluan 

self-energy are those of Fig. (1). 
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The P-odd part of the gh0* self-energy, Uo(P2), is due to 

Fig. (1.a). For instance, consider the piece of Fig. (1.a) which has a 

P-odd part at one vertex, with the other vertex and propagators P-even. 

In Landau gauge, 

n 
2 kx d3k 

PV - g In EpX s (k2+m21((k+p)2+m2) 

Pk In EpXP 

When EtO, 

II 
vv 

- g2m E 
lLVAPhE2 j k2;;rp)2 

A 
- - m Ep~XP 

(3.2a) 

(3.2b) 

(3.2~) 

(3.2d) 

The actual contributions are more complicated than as written in 

Eqs. (3.2a) and (3.2c), but the differences do not change Eqs. (3.2b) 

and (3.2d). 

Using this type of analysis, it can be shown that nQ(p2) is 

infrared finite in Landau gauge, Ilo(0)-g 
2 

fm. Because of the contribution 

of Eq. (3.2d), II,, = -g2N C2/(32Jp2) +..., lIo,(p2) is infrared 

singular for E#O. (There is a term linear in E in flo(p2), but that is 

infrared finite.) 

For the P-even part of the gluon self-energy, Ue(p2), it is cleat 

that the virtual ghost loop, Fig. (l.b), is a problem: 
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lIpv(p) - + g2N 
J 

k"(k+pjv d3k 

Fig.(l.b) k'(k+p)' (271)~ 
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(3.3) 

This appears to contribute an infrared singular term -g2/Jp2 to IIe(P2). 

For an arbitrary diagram, we shall refer to that part of it which 

comes from taking the P-odd piece of each gluon vertex and propagator as 

the "purely c-part" of the diagram; the ghosts and their vertices are 

left unchanged. The purely c-part of Fig. (1.a) is 

- g2N k"(k+pjv 
4 

$(P) - J m d3k 
- . 

Fig.(l.a), k2(k+pj2 (k2+m2) ((k+pj2+rn2) (2~)~ 
purely E-part 

(3.4) 

Obviously, Eq. (3.3) cancels against Eq. (3.4) as p%! 

This cancellation is enough to guarantee that lle(p2) is infrared 

finite to one loop order in Landau gauge. This is not true if E#O. If 

for each gluon propagator in Fig. (la) only the piece -E is included, 

the denominator of the loop integral will depend only on k2 and (k+p)2, 

and so contribute an infrared singular term to Ue(p2): 

lle(P2) = - 

“J 

,z”(, (1 - 5 ) + . . . (3.5) 

There may also be infrared singular terms -E in II,( we did not 

evaluate them. 

The cancellation about zero momentum between Eqs. (3.3) and (3.4) 

is implicit in the calculations of Deser, Jackiw, and Templeton, 5 

although they did not discuss it as such. It turns out to be the key in 

understanding why the theory is infrared finite in Landau gauge. 
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Similar cancellations happen for the vertices. About zero momentum 

in Landau g=ug=, the purely c-part of Fig. (2.x) cancels against 

Fig. (2b) (there is no purely E-part to Fig. (2~). as the four gluon 

vertex is P-even), as do the purely c-parts of Figs. (3a) and (3b). 

This implies that Z and 2 
g g 

are infrared finite to one loop order. 

If ghosts are a problem, why not go to a gauge where they can be 

ignored? I" an axial gauge, npAV-O, ghosts decouple, and there is no 

P-odd part to the three gluon vertex. The gluon propagator is 

Abare 

( 

(n Pv+P “J 
!P) = 6V" - p".p +!lk!L 

> 

1 
PV (“-PI2 p2tm2 

-( 

X+ 
(p EVkWnXPY-PyE x,"xPy) * 

Ep"Xp ".P 
> p2(p2+lr12) 

(3.6) 

Unlike covariant gauges, because of the terms - 1ln.p and - l/(n.p) 2 III 

Eq. (3.6), in axial gauge the infrared divergences of individual 

diagrams must be regulated in some fashion. Given the difficulty of 

c*1cu1*ti*g with the propagator of Eq. (3.6), we did not pursue this. 

After all, as gauge variant quantities, there is no reason why the 

renormalized propagators and vertices should be infrared finite in a 

given gauge: what is remarkable is that they are so in Landau gauge. 

Arguments in axial gauge will help in establishing the cancellation 

theorem of the next section. 

The computation itself requires some diligence; see Appendix C. 

All results are in Landau gauge: 
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(3.7) 

(5 + sin-l($$-))]) , 

rlo(P2) = &- {2 + + + h2 [ nm2((p2)*+p*n12-n14) 
P 4m3(p2)2 

+ 2(3p2-~2)(p2+m2)2 sin-l p2_,2 
( ) p2+rn* 

- 6p*~p*-2m2)(p2+4m2)sin 
-l( J&)1) ' 

(3.8) 

2 
n (p*) = * 

e 
i, 

2 
- 5 - 11 > + JP2 

2m3(p2)2 I 

nm2(2(p*)*+J$2m* 
P 

2 22 +s4) - (p2-7m*)(p tm ) sin 
-1 p2_,2 

( ) p2+m2 
+ ((P2)2 (3.9) 

- 13p2~2+4m4)(p2+4m2]si*~1 
(/&)I] . 

These self-energies were also calculated by Deser, Jackiw, and 

Templeton. 5 ii and no,(p 2 
) agree with their results; II,(p 

2 
) does not 

(Appendix C). From Eqs. (C.7)-(C.9), 
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-&l-L23 
6n m ' 

zln =l+L-& 
12n " ' 

2+52! 
24n m . 

(3.10) 

(3.11) 

(3.12) 

Further, 

2 =I . 
g 

(3.13) 

BeCaUSe the gluon propagator is transverse in Landau gauge, whether or 

not m#O, arguments familiar from four dimensions 
15 

can be used to 

conclude that 2 
g 

= 1 to any order in perturbation theory. This is true 

only in the limit of zero momentum -- while 2 
g 

= Zg(0) = 1, ^igCp2, # 1 

for p* # 0. 

By the Ward identity of Eq. (2.291, 

2 123 g =l-24n m 

We also verified, directly from the diagrams, that the Ward identity of 

Eq. (2.30) holds. 

The properties of the self-energies for Minkowski values of pL 

(teal p2<O) will be discussed in Sec. VI. At present we consider only 

their values at zero momentum. 

The renormalized mass is 

m 
ren 

(O)=~m.m(1+&y . (3.15) 
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The renormalized mass at zero momentum, m 
re" CO), enters into the proof 

of infrared finiteness in Sec. V, but otherwise it is not of especial 

interest. The gauge-invariant quantity of physical significance is the 

position of the pole in the renormalized propagator: this is given by 

m 
IZen 

(-m2), Eq. (6.11). 

The topological Ward identity of Eq. (2.34) is satisfied: 

=q+N . 

re" 

(3.16) 

Even though perturbation theory includes only small fluctuations about 

the vacuum, it still respects the invariance under large gauge 

transformations. The sign of Eq. (3.16) is also interesting-since 

q ren>q. the renonnalized value of the dimensionless coupling constant, 

-(g2/dren, is less than the bare value. 

It is not difficult to argue that, at least in the perturbative 

regime, q>>l, the result of Eq. (3.16) is exact and valid to x order -1 

in perturbation theory. Suppose that the Z's had been calculated to two 

loop order: 

Z 
m 

Z 
+'b+,, 

2 

2 
6n m 

g 
g 

(3.17) 

(3.18) 

Plugging into Eq. (2.34), we find 
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q ren 
=q+N+ $ (a+2b-l/6) . (3.19) 

4 ren can be an integer for arbitrary N, and arbitrary q>>l, only if 

at2b = l/6 . (3.20) 

Beyond-but not at-one loop order, the topological Ward identity acts 

like a "typical" Ward identity. That is, if we know ZIZ = z/z to 
g g 

-O((g*/m,"), and Zm to ,0((g2/m)"-1), n>l, then the topological Ward 

identity tells us what the coefficient of Zm is to - O((g*/n~)"). 

The topological Ward identity has a smooth limit at large N. As 

N--3 m and g2ii should be _ O(l), so take q=rN, q = r N. r and r ren ren IX" 

are integers, which are large in the perturbative regime, but they are 

fixed numbers at infinite N. Eq. (3.16) gives rren - rtl. 
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We have seen that in the infrared, the worst problems are due to 

the purely c-parts of diagrams. So let us construct a theory in which 

these are the only diagrams: 

L = L' t L' 
t gauge ' (4.1) 

L’ = - i ~pvXtr A'a A' + $ 
PVA 

L' 
gauge = mS 

- L tr (apA") + (8%) D;, -2 tr (J;A'p) . 

(4.2) 

(4.3) 

This is just the original theory, with L,,-0. A 
v 

has been resealed, 

Apt-A;/& and g ' = g/,&u is a dimensionless coupling constant. 

We call Lc the "E-theory. M Similar models have been considered by 

Hagen. 
9,lO 

g ' is still quantized, 4n/(g'j2 = q. 

The gluon propagator is 

A,b=== = _ 
A 

% + Em 
y& 

PV EpVX 
P (P2j2 . 

(4.4) 

As p*XJ, this propagator has the same singularities as that of 

Eq. (2.12). 

The ultraviolet behavior, however, is very different from that of 

the original theory. Instead of being super-renormalizable, the 

e-theory is only renormalizable, and at least in principle, there can be 

logarithmic ultraviolet divergences in perturbation theory. 
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Suppose that from the generating functional, G(J'), 

exp (-G(J')) = 
s 

DA;(x) exp [- d3x LE] , (4.5) 

the effective action has been constructed by Legendre transformation: 

6 
~ G(J') , 

A;(X) = 6J;W (4.6) 

S eff(A;) = G(J')- 
/ 

d3x ";A'" . (4.7) 

I" general, Seff (A;) will be a very complicated functional of A;(x). It 

=a" only depend on gauge-invariant operators such as tr(F;')*, but its 

dependence on them can be non-local, to arbitrarily high order. 

An exception is Landau gauge, where Seff (Ai) is very simple. L' is 

always odd under parity, L' 3 -L'. As E-W, the term ~tr(aPA'p)2 in 

L' can be taken to vanish. 
mug= 

When this happens, i,", and J' can be 
P 

defined to transform under parity in such a way that L' is also 
@"Lx= 

P-odd, L' -+ -I,' 
gauge P gauge' '=O. 

Hence in Landau gauge, we have the unusual circumstance of a theory 

in which all fields, and so their bare propagators, as well as all bare 

vertices, are odd under parity. The effective action is constructed in 

the usual fashion by tying together these bare propagators and vertices. 

But if each and every propagator and vertex is P-odd, then order by 

order in perturbation theory, there is simply no way that any P-even 

term can enter into S eff(A;): being odd under parity is a symmetry of 

the c-theory, respected both by the bare and effective actions. 
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This conclusion is only possible because & of the bare 

propagators and vertices are P-odd. If some fields in the theory were 

P-even, the bare action would have P-even parts to it, so that although 

it might be P-odd overall, this would be violated by loop effects, 

through P-even terms in the effective action. Such examples can easily 

be constructed with (interacting) scalar fields, for with scalars, it is 

inevitable that if some fields are P-odd, others will be P-even. Of 

course, if the bare action has both P-even and P-odd terms to begin 

with, so will the effective action. As we shall see below, this happens 

in the E-theory outside of Landau gauge, EZO. 

Indeed, it is so extraordinary to have an (interacting) field 

theory in which all propagators and vertices are P-odd, that the only 

other examples we are aware of are essentially direct generalizations of 

the E-theory in Landau gauge. These are gauge theories in an odd number 

of space-time dimensions, with no matter fields, for which the action is 

entirely a Chern-Simon6 term; generalizations that involve 

3 
supersymmetry and gravity 495 are also possible. As for the. e-theory, 

we expect that in a gauge which does not introduce P-even terms, such as 

Landau, that the effective action of these theories is P-odd, like the 

bare one. Eq. (4.8) also generalizes to these theories in an obvious 

manner. 

Returning to the c-theory, how can we construct an effective action 

which is P-odd? To be odd under parity, Seff(A;) must involve an odd 

number of A;'6 and 9 '6; to be Euclidean invariant, these need to be 
P 

contracted with objects like with the anti-symmetric tensor, E VA . Thus 

we might expect Seff (A;) to be constructed from I d3x L' times P-even 

f""ctio"s such as tr(F;"j2. Remember, however, that L' transforms 
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non-trivially under gauge transformations, Eq. (2.8), so any term such 

as Jd3x L' tr(F'J2, etc., cannot result in a gauge-invariant partition 

function. The only way that Seff(A;) can be P-odd, and exp (-Seff(A')) 
P 

g=uge invariant, is if S eff(A;) has exactly the same form as the 

original action: 

d3x -iZ’ EvVh 
z t 

S eff(A;) = tr(A'a A' + ; $- g'A;A;A;;) , 
Pv* 

(4.8) 
E-0 

where Z' and Z 
g' 

are wave-function and vertex renormalization constants. 

The Ward identity of Eq. (2.26) holds, and implies 

(4.9) 

with 2, and z 
g' 

the renormalization constants for the ghost and its 

vertex. In the c-theory, there is no constant analogous to z 
m' 

To determine Seff (A&) in Landau gauge, we need only to find Z' and 

Zg'. To do so, we consider the c-theory in axial gauge, n A!'=0 
P * 

It is 

apparent that in axial gauge, the c-theory is a free field theory! (It 

is less obvious why m/(g'12 is still quantized, but it is.6) This means 

that in axial gauge, all renormalization group functions must vanish. 

This includes the B-function for g', E(g'), the snomslous dimension of 

A', IA'( 
p P 

and the anomslous dimensions of composite operators, such 

2 
as that for tr(F' ) , T 

VW tr(F' ) 
2(g'): 

vv 

B(g') = YA'h') = Y 2(g') = . . . = 0 (4.10) 
v tr(P;") 

for all g'. 
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The renormalization group functions of a gauge theory are gauge 

invariant only at a fixed point. Since every value of g' is a fixed 

point, E(g') = 0, Eq. (4.10) is valid in ="Y gauge. For 

B(g') = Y*, (g') = 0 to be true, Zg, and Z ' must be finite functions of 
P 

g . 

Let us return to Landau gauge. To all orders in g', 2 ,=l. 
15 

g 
BY 

the Ward identity of Eq. (4.9), this implies that 2' is also a finite 

function of g'. Explicit calculation to two loop order shows that 

Z’ = ‘ir = 1 ; (4.11) 

to -o((g’)4) , there are not eve" finite terms # 1 in the 2' Is. 

Our cancellation theorem is the statement that, in Landau gauge 9 

the effective action of the c-theory is given by Eq. (4.8), and that the 

Z' 's are finite. (We suspect that Eq. (4.11) holds to all orders in 

g > but have not prove" this. To establish infrared finiteness in 

Sec. V, the 2' Is of the c-theory do not have to be = 1, but merely 

finite.) All of the cancellations between the purely .E-parts of 

diagrams in Sec. III are examples of this theorem. 

For an arbitrary n-point function between gluons in the original 

theory, the theorem guarantees that when C=O, to 3 order in g*, the 

leading infrared divergences from the purely e-parts of diagrams must 

cancel against each other. 

What happens in the c-theory for covariant gauges other than 

Landau? The 
te=m -tr(aPA 

")* in L' 
gauge 

does not vanish if EtO, so the 

bare action has both P-even and P-odd terms. Co"seque"tly, the 

effective action will include P-even terms such as tr(F' ) 
2 

and the 
PV 

like. Eq. (3.5) is the simplest example of such a contribution. 
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By Eq. (4.10), any gluon renormalization constant is finite. Zl 

and 2 
g' 

might be infinite for E f 0, as long as ?'/z 
g' 

is finite. The 

detailed form of Seff(A;) embodies one simple property. To recover 

Eq. (4.8) in Landau gauge, any gluon n-point function need vanish as a 

power of <, when 5+0, if "24. 
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V. INFRARED FINITENESS 

Henceforth we restrict ourselves to Landau gauge. 

We start by considering the infrared singular terms for the P-even 

part of the gluon self-energy, lIe(p2). To two loop order, there are no 

diagrams whose purely c-part contributes to lyP2L There are still 

infrared singular terms, such as that of Fig. (4.a): 

2 

s 

k"(ktP)' 

(k2)2(k+p)2 
(k2%k2))d3k 

g2%O) 
/ 

k"(k+p)' d3k 

P-to k*(k+p)* 

(5.1) 

E(0)-g2/m, so this seems to give a piece -g2/Jp2*(g2/m) in lIe(p2). The 

purely c-part of Fig. (4.a) vanishes, since to one loop order, the ghost 

self-energy does not depend on the P-odd part of the gluon propagator 

(Sec. III). 

The diagram of Fig. (4.a) can be viewed as a self-energy insertion 

on one of the ghost legs of Fig. (1.b). The other diagrams which are in 

danger of contributing "g*/Jp*.(g*/m) to Ue(p*) include a diagram which 

is like a vertex renormalization for each vertex of Fig. (1.b). and 

similarly for Fig. (1.a). 

There is a convenient way of organizing these contributions, which 

is a kind of "infrared renormalization." Let AL stand for the 

connections to the bare propagators and vertices, computed about zero 

momentum. For now, we include only the one-loop terms in AL, so 

AL-O(g*/m). We rewrite the bare Lagrangian, L, as 
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L I L + AL - AL = Lre" - AL . (5.2) 

Lre" is the renormalized Lagrangian of Sec. II, which generates the 

renormalized propagators and vertices, about zero momentum, to one loop 

order. 

Our strategy is transparent. To calculate to -O(g4), in two loop 

diagrams we take Lre" - L, so Fig. (4.a) is unchanged. AL-O(g*/m) 

contributes through insertions in one loop diagrams, like that of 

Fig. (4.b). Evidently, Figs. (4.a) and (4.b) cancel about zero 

momentum. Because the Z’S contain terms of -O(g‘lm), one-loop diagrams 

must be recalculated, using L "" instead of L. For Fig. (1.b). 

IIVY - 
Fig.(l.b), 

k'(k+p)" d3k 
- . 

k*(k+p)* (2~)~ 

L 
ren 

The purely E-part of Fig. (1.a) gives: 

EPY!P) 
Fig. (l.a), 

(5.3) 

(5.4) 

purely E-part, 

L 
?Ze* 

4 
k'(k+p)v 

m 
Tl?" g%& 

k2(k+p)* (k2+mfen)Uk+p)*+m2 ) (2n)3 ' 
re* 

m =m 
ren ren 

(0). By the Ward identity Zg/Z = zg/?, Eqs. (5.3) and (5.4) 

cancel against each other about zero momentum. This is enough to show 

that there are no terms -g*/Jp*.(g*/m) in IIe(p*j. 

The extension to higher orders is direct. At " loop order, the 

most infrared singular term in IIe(P2) can be no worse than 

-g*/Jp*.(g*/mj"-l. There are several ways these terms could arise. 
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The first is from the purely c-parts of n-loop diagrams. These 

vanish unless n is odd, as for Figs. (1.a) and (1.b). Calculating with 

L 
ren 

_ L, the cancellation theorem to n loop order tells us that the sum 

of the purely c-parts of these diagrams vanish about zero momentum. 

Secondly, there are infrared renormalizations of the purely e-parts 

of diagrams to n' loop order, n'<n. These are diagrams computed to n' 

loop order with L*="; n' must be odd, and the Z's of L==" include terms 

up to - o((g*/d"-"I). An example is Eqs. (5.3) and (5.4). The sum of 

these terms vanish by the Ward identities, and the cancellation theorem 

to "1 loop order. 

Finally, there are contributions which can be viewed, 

diagrammatically, as self-energy and vertex insertions into the purely 

c-parts of diagrams at n" loop order, n" odd and (n. These diagrams 

will have parts that are not purely r-like, arising from the self-energy 

and vertex insertions, such as Fig. (4.a). These diagrams cancel about 

zero momentum against insertions of AL, computed to -O((g*/ln)"-"")) into 

the purely c-parts of n" loop diagrams: e.g., Figs. (4.a) and.(4.b). 

This shows that order by order by order in g*, all terms -g2/Jp2. 

(g2/d"-1 in II= cancel about zero momentum. 

The possible infrared singularities of the P-odd part of the gluon 

self-energy, no(P2L the ghost self-energy, ii( and the three-gluon 

vertex are all similar. For instance, at two loop order each of them 

has diagrams whose purely c-part contributes, in a schematic form, 
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2 
m 

2 
(kI*+m2) 

d3kld3k2 

(5.5) 

To arbitrary order, the worst terms are -(g*/m)" ln(~m'jp*) , where n need 

be even. Because these terms arise from the purely c-parts of diagrams, 

they have a direct interpretation in terms of diagrams in the c-theory 

of sec. IV. A term -(g')2"ln(A2/p2) in the c-theory (A * an ultraviolet 

cutoff) corresponds to one 4g2/m)"1n(m2/p2) for the purely s-part of a 

diagram in the original theory. We know from Sec. IV that to any order 

2 
in (g') , there are no ultraviolet logarithms in Z', 2'. and Z t; this 

g 

implies that to 
2 

="Y order in g , there are no infrared logarithms in 

IIo(P2)> ii(P2), and the three gluon vertex, respectively. 

There is one point which we have overlooked. Besides terms 

-g2/Jp2~(g2/m)"-1 in lIe(p*), there are also infrared logarithms 

possible, -(g*/m)" l"(m*/p2), for eve" n. By the Ward identity of 

Eq. (2.26), these infrared logarithms must cancel, since they do so in 

Zg and : (remember zg=l in Landau gauge). Similarly, by its Ward 

identity, the four gluon vertex must also be infrared finite. 

Having made no pretense of rigor, this concludes our proof that the 

renormalized propagators and and vertices are infrared finite in Landau 

gauge. 

Our process of infrared renormalization is similar to ultraviolet 

renormalization in a renormalizable field theory, but the analogy is not 

exact. Consider, for example, a proper n-point function of gluons, 

r("). We suppress the color and Lorentz indices, and take the n-l 
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independent momenta, and their dot products, etc., to be of the same 

order, "Jp'. To one loop order, the purely e-parts of diagrams give 

r(n) * 1. 
P2+Q (4p2)“-3 

b (') is - g2Jp2 since r(*)--lt ,,(p).) By the cancellation theorem, the 

purely c-parts of diagrams cancel about zero momentum. and 50 I-(") is 

really only singular as 

r(n) - 
P2+o 

--L. m(Jp ) 

r(n) 1s finite as p2+0 for "$4, but it seems improbable that this will 

be so if 125. 

This is unlike ultraviolet renormalization, where once the 

ultraviolet infinite3 are removed from the propagators and vertices, 

they will not show up in higher n-point functions. With our infrared 

renormalization, the propagators and vertices are infrared finite, but 

higher point functions are not. 

This is not a significant matter, though. r(") is only singular as 

all of its external momenta -Kl. Suppose we insert a r (n) , "25, as part 

of a diagram for a propagator or vertex to some high order in g2. Then 

the point at which r(n) 1s singular will be a set of measure zero for 

the loop integrals, and can be ignored. Thus the infrared singularities 

of the $n) for II-> 5 does not contradict our proof of infrared 

finiteness for n< 4. 
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I” any case, our real interest in the r ("1 
3 n>4, is when all of its 

external legs go on the mass shell. This is the subject to which we 

turn next. 



-35- FERMILAB-Pub-85166-T 

VI. THE DISCONTINUITIES OF AMPLITUDES 

The bare equation for the propagation of a glum is 

!a26py+imE 
PX 

a”)A=‘“(x) = 0 (6.1) 

in Landau gauge. Expanding A:(x) in plane waves, 

A;(x) = e; exp(ip.x) + C.C. , (6.2) 

the polarization vector, es, 
P 

is transverse to p 
v' p eP 

' = = 0. Under gauge 

tra"sformations. 

A; + A; + apA= + gf abcA>c . (6.3) 

We neglect the last term in Eq. (6.3), on the grounds that it generates 

perturbative corrections to asymptotic states. For the gauge 

transformed A; !x) to remain in Landau gauge, a 
2a 

A (x1-0. A solution is 

Aa = -icaexp(ipo.x) + C.C. , (6.4) 

with p 
0 
!J 

a null vector, ip;12 = 0. Thus, if the gluon's momentum is null, 

P2 - 0, by setting p" = 
!J pPv 

e; is defined only up to the transformation 

= + e= + 
elJ P 

cap 
P * 

(6.5) 
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For massless gluons, the part of e; parallel to 
pll 

can be 

eliminated by Eq. (6.51, with the remainder perpendicular to p : 

a 
eP 

= e=p:, where p'.p = 0, but ~~~~~~~~ f 0. This shows that for earh 

Color index, a lX4SSlesS gluon in these dimensions has one (physical) 

degree of freedom, 
5 

versus two in four dimensions. 

For m # 0, consider first the massive pole in the propagator, at 

2 2 
p =-m . The polarization vector satisfies 

a 1 
e 

P = m Ep"Ae 
a,vpX 

(6.6) 

For example, in the rest frame 

PF = (-im,O,O) ; 

we take the first coordinate to be time, and the other two, space. The 

solution for e; is 

e= v = $ (O,l,i) , 

so e; is a right-handed (spatial) vector for m>O. For the opposite sign 

of the Chern-Simons mass, m<O, e ; is left-handed in the rest frame. 

Outside of the rest frame, e ; has both time and spatial components; the 

latter are a definite mixture of left and right handed terms, depending 

upon the sign of m. 
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When m f 0, if p2 = 0 , 

m E I.lvh = = 0 
evpX 

, ppe; = 0 . (6.7) 

The solution is e= = -cap 
P lJ' 

but by the residual gauge freedom, we can 

a 
setc =o. Consequently, while the bare gluon propagator does have 

poles at zero momentum, there are "0 physical degrees of freedom 

associated with the massless modes. 

This result is not that surprising. Unlike a Higgs mechanism, the 

introduction of a Chern-Simons mass term does not alter the number of 

physical degrees of freedom for the gauge field. On the mass shell, 

there is one degree of freedom per color index for a massless gluon. so 

when m # 0, this single degree of freedom goes into the massive mode, 

leaving only gauge variant parts for the massless pole. 

Physical amplitudes are obtained in the usual fashion. For 

example, to obtain n-particle T-matrix elements T (n) , one starts with 

the proper n-point function, r (njab... 
pu.. . (pvq... ). Each leg is put on the 

mass shell, p*=q*=...=-m2, and dotted with a suitable polarization 

vector, 

,(n) 
= e;(P)+qL..r 

("jab... 
)I\)... (p,q...) 

If it can be shown that the massless modes do not contribute, then the 

Cutkosky rules imply that the only discontinuities of T (n) for Minkowski 

values of the momenta, p2 real and (0, are those of massive particles. 
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The contribution of the massless modes to the discontinuities of 

physical amplitudes cancel as a consequence of gauge invariance, in 

essentially the same way as they do in ordinary gauge theories with 

spontaneous symmetry breaking. 
13-17 

To show that the discontinuities 

from intermediate states with a single massless mode vanish, we start 

with a n-point amplitude in which all of the legs except one are on the 

-(n)= mass shell, T p(P); P is the momentum of that one leg, etc. The 

infinitesimal Ward identities can be used to show that p T '-(");(p) L p* 

times a function which is regular at p* = 0.17 For the massless mode, e; 

=-c=pp, so e;(pii'"';(p, + 0 * as p -Xl, which establishes what we desire. 

The extension to intermediate states with more than one massless mode, 

for which the contribution of ghosts must be added, can be carried out, 

following, e.g., Ref. 17. 

The massless modes do not contribute to the discontinuities of 

physical amplitudes, but they do for quantities that are gauge variant. 

This is illustrated by the self energies to one 100p order, 

Eqs. (C.12)-(C.14)-they all have branch cuts which start at zero 

momentum. 

This raises a" obvious question-if Ile(p*) and Uu(p*) each have such 

branch cuts, how can the renormalized propagator have a simple pole at 

P2 = -m*? To answer this, we observe that a physical amplitude is formed 

from the gluon self-energy, II;;(p), by contracting each leg with the 

proper polarization vector, and setting p2 = -m2: 
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(eL)* fbycP)ebyi 
* 

pL,2 
= - (e .e =) m2 

( 
~e(-m2blro(-m2) , 

1 
(6.8) 

where Eq. (6.6) has been used. As a gauge-invariant quantity, the 

discontinuity of Eq. (6.8) must start with the exchange of two massive 

gluons. Kinematically, this is impossible at p2 = -m*, hence 

Im lIe(-m2) - lIJ-m*) (6.9) 

The renormalized mass is given by Eq. (2.19c), so Eq. (6.9) ensures that 

m re"(P2) 
2 2 

is real at p =-m to one loop order, although mren(p2) is 

complex for O>p 
2 

>-m2 and -m2>p2. 

The results of Sec. III obey Eq. (6.9), Eqs. CC.181 and (C.19): 

Im (lI,(-m*)) = Im (Du(-10')) = 2 . (6.10) 

It is worth mentioning that Eq. (6.9) is a Ward identity which must hold 

in any covariant gauge. An example is the E 
2 

terms in 40(p2) and 

lTe(p2)- at p*--m2, these terms cancel, Eqs. (3.2d) and (3.5). 

By Eq. (6.10). the wave-function renormalization constant is 

complex on the mass shell, Im(Z(-m2))20. This phenomenon is only 

possible if the gauge theory is non-abelian and has a Chern-Simons mass 

term, for without the Chern-Simons mess, the gluon has only a single 

self-energy, II, which satisfies Im(iT) = 0 on the mass shell. Even so, 

that Im(Z(-m*)) i 0 here appears to be just a curiosity, since 

Im(Z(-m 
2 

)) cannot be measured directly in any physical process. 
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On the mass shell, the renormalized mass is (Eqs. (C.18) and 

(C.19)) 

2 

mphy* 
=lS ren(-m2) = m(1 + $z (271*3-4)) 

to one loop order. This m 
phy* 

determines the gauge-invariant position 

of the pole in the renormalized propagator, and so is properly termed 

the physical mass. 

Our arguments about the discontinuities of physical amplitudes 

=PPlY only to one 100p order, but they can easily be extended to 

arbitrary order. To higher order, it is necessary to take into account 

the shift in the physical mass from its bare value, and that 7.(-m‘ 
pd 

is complex. Eq. (6.8), 
2 2 

evaluated at p =-m 
phy*' 

will ensure that the 

massive pole in the gluon propagator remains a simple pole. Thus the 

renormalized on shell equation for a gluon differs from the bare one, 

Eq. (6.1), merely by the replacement of m with m 
phy* 

; Z(-mL 
phy*) factors 

out. The remaining steps go through unchanged. 

Our results can also be used to show that the correlation functions 

of gauge invariant operators fall off exponentially over large distances 

in Euclidean space-time. This is best shown by example: we compute the 

two-point function of tr(Fpv)* to -O(l). At leading order, we can take 

only the abelian piece of the operator, tr(F and the 
IJ" 

)*-tr(apAV-avAp)2. 

bare gluon propagators in the one-loop diagram. The result is 
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= 8(N2-1) 
/ 

(k.(k+p)-m2)2+k2~k+p)z-m4 d3k 

(k*+m*)((k+p)*+m*) (2nj3 ' 

FERMIJ..AJ+Pub-85/66-T 

(6.12) 

independent of E. Terms involving k‘(k+p)' in the denominator of the 

100p integral have cancelled against identical terms in the numerator. 

Ihis can be understood by computing the two-point function as an 

infinite sum of form factors, 

(Oltr(F~y)2triF~~)210> = 
c 

I<n)tfVJ210>~2 ; (6.13) 

" 

1 represents the sum over intermediate states. Gauge invariance for the 
n 
operator and its form factor exclude any msssless states from the 1. To 

n 
-O(l), only (massive) two-particle intermediate states contribute, 

Eq. (6.12). 

Our results show that it is possible to answer detailed questions 

about the physics of topologicslly massive chromodynsmitis. Further 

studies are presently underway. 
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APPENDIX A: THE ABELIAN THEORY 

In this appendix we consider some elementary aspects of an abelian 

gauge theory with a Chern-Simons mass term. After solving two problems 

in statics, we discuss how charged particles can be said to exhibit 

fractional statistics 
18,19 

over large distances. 

The Lagrangian is 

L=iF 
2 

vu 
+ ; ~~~~~~~~~~ + J'A 

v ) 
(A.1) 

F 
= avAv-a A . 

this with 
P" VW 

The space-time is Minkowski in appendix, 

signature C-t+). Also: 
+ 

2=(x0, x), E 
Oij = + Eij, i,j = 1,2. In two 

space dimensions, 
++ 

the curl of two vectors is a scalar: axb = ij cija b . 

The action transforms by a surface term under a g=uge 

transformation5, so m is not quantized. 

We assume that all matter fields are heavy: if their mass is mH, 

their charge e, e I 2 mM<<l. Proving infrared finiteness in the quantum 

theory is trivial, so we can take the photon to interact with a fixed 

external source J v . 

The field-strength tensor F 
PV 

is composed of an electric field 2 

and a pseudo-scalar magnetic field B: 

2 = ?A0 + a,1 , B = 3x2 . (A.21 

There are three equations of motion: 
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3 .2+mB=J” , 

axB - a,2 + 4~ = 3 , 

and one Bianchi identity, 

aoB - 3x2 = 0 . 

For static charge distributions, 

B = e C~x?-mJ”) , 

; 

(A.3) 

(A.4) 

(A.5) 

(*.6) 

(A.7) 

the 2 and B fields fall off exponentially, -exp(-mr), over distances far 

(dh0-l ) from =*y charge distribution (by convention, m>O). To solve 

static problems, it helps to recognize that 

a2(B+mAo) = 3x3 . (~.8) 

For the distributions we consider, this implies that BtmA O is constant 

away from sources, so 

-I&= $B (A.9) 

in source-free regions. Eq. (A.91 is reminiscent of the self-duality 

condition in four dimensions. 
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We tllrn now to our two examples. 

Point Charge: 
2 

JO = .62(:) ,3-O (A.10) 

For m = o,il= A erl(2ar). When m f 0, one matches A'*ln(r), valid for 

r<<m 
-1 

, onto the solution of the free, massive wave equation which falls 

off at spatial infinity: 

A0 = - k Ko(mr) , (A.11) 

K. the modified Bessel function of zeroth order. In this instance, 

0 
B = -mA, so 

B w - z ln(rm) , r<<m 
-1 

, 

B-2 m 
r 

2nr exp(-mr) , r>>m 
-1 

. 

(A.12) 

(A.13) 

This shows that static charges induce magnetic flux. Indeed, 

consider a distribution of charge arbitrary except that it is bounded in 

Size. Integrating Gauss' law, Eq. (A.3), over a region A whose contour 

C is everywhere far from any charge, since &-exp(-mr) -0 on C, we obtain 

a relation 235 between the total flux, 0 - I *B d2:, and the total charge, 

e 
tot -I *Jo d2:: 
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@ = etot/m . (A.141 

The Chern-Simons mass transforms a particle with charge e into a flux 

"tube", 
-1 

of width -m , and strength elm. 

Line Charge 

JO = es(x) , s A = e" 8(x)y , 

which is a wire with current ev along y. For m-0, 

B = ; ” 9’(x) , 

f3'(x) = ?l for x30. When mi0 , 

(A.15) 

(~.i6) 

B 3; (1 + v@'(x))exp(-mIxI) , 

(A.171 

2 
* 

- BB'(x)x . 

It is amusing to note that if the charges move at the speed -of light, 

Y - 1, by Eq. (A.17) there are fields on only one side of the wire. 

The solution for the line charge shows that the Chern-Simons mass 

produces a separate part of the electric field, z-:x, from moving 

charges. This is like the Hall effect. 
8 

For two charged 

Eint. ' 
vanishes over 

particles, the interaction energy between them, 

large distances in the static limit: 

Eint (r) 
ele2 zx: 

&-1 2nm - . 2 
r 

(A.18) 

The charges of the particles are el and e2; their relative separation 
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and velocity are : and :, respectively. 

While Eint (r)+O as r -) m, quantum mechanical effects can still 

produce correlations between particles over large distances. Suppose 

that we fix particle 1, and rotate particle 2 infinitesimally slowly 

around 1 by 2~. The wave function of 2 changes by exp[ie,$;t.dj!] - 

ex~(le~0~) = exp(iele2/m). The wave function of 1 changes by an equal 

amount, since 2 is itself a source of magnetic flux, and so the total 

two-body wave function changes by exp(2iele2/m). Interchange of 1 and 2 

iS like a rotation of the relative wave function by r, so under 

interchange, the two-body wave function changes by exp(iele2/m). 

This phase is of little consequence if the particles are not 

identical.2 If the particles are identical, el = e2 = e, let us choose a 

gauge in which the vector potential is essentially zero everywhere, 

except around the two particles. In this gauge, the two-body wave 

function must be defined so that upon interchange of 1 and 2, there is 

an additional factor of exp(ie2/m) which multiplies the usual ? 1. 

It is in this gauge variant sense that charged particles exhibit 

fractional statistics. Wilczek" first observed that flux tubes with 

arbitrary flux have fractional statistics. It is known19 that charged 

particles coupled to an abelian gauge field with a Chern-Simons mass, 

but no term - $ F 
2 

P" 
, do as well, so it is not surprising to find 

fractional statistics in the full theory, Eq. (A.1). What we find of 

interest is that the full theory provides, physically, such a direct 

example of h'ilczek's original insight, since any charged particle acts 

like a flux tube over large distances. 
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The effect only occurs for particles separated by distances 
-1 

>>m . 

Over distances (m 
-1 , charged particles do generate magnetic fields, but 

their mutual electric fields are not negligible, and there is no simple 

expression obtained as they encircle. In particular, it is sensible to 

speak of the charged particles as being, fundamentally, either bosons or 

fermions - the equal time (anti-) commutation relations between the 

charged fields follow from their properties at short distances, and 

remain those of (fermions) bosons. Further, it is only the charged 

fields, and not the photon itself, which have fractional statistics: 

-7 the contribution of the photon field to the generator of angular 

momentum is standard (appendix, Ref. 9). 

The ratio e2/m, which fixes how fractional the statistics of 

identical charged particles are at large distances, is an arbitrary 

number. We remark that the e‘ and m which enter here are renorealized, 

and not bare, quantities; they are obtained from the renormalized photon 

propagator about zero momentum. In this way, the fractionel nature of 

the statistics, - e2/m, is itself renormalized. 

Does a non-abelian gauge theory with a Chern-Simons mass term 

exhibit fractional statistics? To answer this, we first need to 

understand how to measure the tote1 COlOTZ charge in a non-abelian 

system. 

Let J' be an external source of color, for either gluons or matter 

fields. As before, we choose a region A whose boundary C is everywhere 

far O>m-l) from where J'#O. 

The obvious definition of the total charge, 
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gtot = / 
J"d2; 

A 
(A.19) 

is a color matrix, but otherwise it is not very physical. The color 

current is only covariantly conserved, Dp.T' = 0, so gtot is generally 

time dependent; gtot is also gauge dependent. 

To avoid these problems, we define the "global" color charge, Q: 

Q - 2 f (2. - ; lx);: dl ; (A.20) 

+ 
n is the normal to C. Using Gauss' law, and that 2 -0 on C, 

Q = s, {Jo- g [", .z]- mg dxd)d2: (A.211 

The last two terms in Eq. (A.21) represent the corrections to gtot which 

are necessary in a non-abelian theory. 

Why is Q superior to gtot? Unlike gtot, Q is independent. of time. 

This is because the vector K', 

KP = avFv' - m Epyxav~ (A.22) 

has zero divergence, apK' = 0. Neglecting surfece terms at spatial 

infinity, Q = I *K" d2:, .?,Q - 0. Secondly, Q is invariant under 

arbitrary local gauge transformations n, as long as color fields at 

spatial infinity are unchanged by fl: if Q = exp(A), by Eq. (A.20) Q is 

invariant if A(x",~)-M as 2-W. 
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These properties of Q are not accidental. InA'=0 gauge, Q is 

precisely the charge associated with global rotations of color. 

Now let J' represent two identical, colored point particles, 1 and 

2. They are far enough apart so that we can integrate over regions 

>>m 
-1 

in size around each without crossing the other. Their local color 

charges, as in Eq. (A.19), are gl and g2, and their global color 

charges, as in Eq. (A.20), are Q1 and Q2. As particle 2 is wrapped 

around 1 by 2n, the two-body wave function changes by 

-exp(iglQ2/m)exp(ig2Ql/m). This factor is not invariant under local 

g=ug= transformations, as would be a term like exp (2iQlQ2/m). 

Consequently, identical colored particles do affect each other over 

large distances, but this has no (relatively!) simple interpretation as 

a sort of fractional statistics. 
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APPENDIX B: SPONTANEOUS SYMMETRY BREAKING 

when spontaneous symmetry breaking occurs, the presence of a 

Chern-Simons term for the gauge fields alters the mass spectrum in a 

striking way. We illustrate the effect with an abelian gauge field, but 

it also happens if the gauge field is non-abelian. 

We take as our Lagrangian 

LPLF’ 
4 P’y 

+ p E'"'A~~~A~ 

(B.1) 

+ ID,,+? - r21012 + 5 (le12)2+ L gauge ' 

D 
= av + ieA v 

p; P2? X and m>O. We return in this appendix to Euclidean 

space-time. (I is a complex scalar field: 

+ - L- coo + 4p + i 02) I 
J2 

for real $o, $1, and $I~, with 

$0 
2 -22 h I +' - <02' -0 . 

The gauge field is redefined as 

B 
P = "11 + 

1 
--a$ . 
e. P 2 

(B.2) 

(B.3) 

(B.4) 

BY * suitable choice of L gauge ('t Hooft gauge), the bare inverse 

propagator for BP becomes 
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A-l = (P2+m$py + (5 
-1 

-l)Pyp,+ m E 
x 

PV pip ’ 

2 2 2 
m 

s 
=eeo . 

The bare propagator for B is found to be 
P 

FERMILAB-Pub-85/66-T 

(B.5) 

(~.6) 

PIP” m 

(P2+Em;) (p’+l() 
EpVXp 

+EPP 

(p2+ln2+n$ 

’ D(p2)(p2+bf) ’ 

where 

D(P2) P (p2+mf)2 + m2p2= (p2+m$P2+m’) ’ (~.8) 

(B.7) 

and 

2 2 2 2 
In+ = m 

s 
+y+, (B.9) 

What is remarkable about A is that it has 
PV 

TWO distinct poles 

which are physically significant, one at p2 = -m:, and one at p2 - -m2 _* 

The piece of A 
pv-pppv 

also has a pole at p2 = - F;m2 
5’ 

but this is a 

gauge-variant excitation - e.g., it decouples for E-kO, as expected in 't 

Hooft gauge. 
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About the two poles in A 
PV' 

A - 
Ilv 

p2+-lS2 + 

A!!- +... ) 
p2+m2 + 

. . f 

(B.lO) 

(B.ll) 

This shows that each of the two poles, at p2 = -mf and p2 = -m', 

contribute to the 6 
!Jv 

part of A 
PV 

with positive residue, so both are 

physical, gauge invariant excitations for m and ms#O. 

In the limit that ms<<m, 

4 
2 2 2 ms m+-m , m---cj , 

m 

and A behaves as 
WV 

A - 
vv 

p2+-lS2 + 

A .- -f=+... 
v " p2+mf 

(B.12) 

(B.13) 

(B.14) 

ms<<m 

When ms+O, m +O, but from Eq. (B.14). the state at p2 = -m2 decouples 

from the 6 
VL" 

piece of A 
PJ' 

Turning off the symmetry breaking, 

$0 - ms 
= 0, removes one of the two physical poles in A 

pv; 
this agrees 

with our analysis in the text. 
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To see why A 
vv 

has two physical poles for m and m + 0, we consider 
S 

the (bare) on-shell equation for BP, as in Sec. VI: 

B'(X) = 0 , 

apB%) - 0. With 

BP(x) - epexp(ip*x) + c.c. , 

pPe - 0 
v 

, and 

(p2+m~ ) ep + m cpvXe"pX = 0 . 

(B.15) 

(~.16) 

(B.17) 

We solve for e in the rest frame: 
P 

PP v = (-im , 0 , 0) , 

=lJ 
- (0 . el, e,) . 

Without the Chern-Simon6 mass, m - 0, z = ms, and 
=1 

and =2 *== 

arbitrary. This is what usually happens with spontaneous symmetry 

breaking in three dimensions - at p2 = -m",, the BP field has two degrees 

of freedom, one from A 
P' 

and one from the scalar $2. 

With the Chern-Simon6 mass, and ms # 0, there are two solutions to 

Eq. (B.17), ; = m,. Their polarization vectors satisfy 
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+ 2 2 i. -Eim 
=2 2rnrn~ el 

(~.18) 

BP must still have two degrees of freedom on the mass shell, but instead 

of one mass, with a two-component polarization vector, when m and m f 0 
S 

BP is on shell at two distinct masses, though the polarization vector of 

each has only one (independent) component. 

why? Remember that the Chern-Simon6 mass is P-odd, so the mass 

spectrum should reflect this handedness. This is not possible if B is 
P 

on shell at one mass point with two independent components for 
=P. s0* 

B 
v 

"splits" into two on shell masses, m+ and m . The polarization vector 

of each, e' 
P' 

is a definite mixture of right and left-handed terms for 

m>O. When the sign of the Chern-Simons mass is flipped, this mixture 

changes: ei/ei 
+ + 

+ -e;/e; 88 m-+-m. 
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APPENDIX C: THE SELF ENERGIES TO ONE LOOP ORDER 

We present here some of the details of the calculation of the self 

energies to leading order in Sec. III. 

The integrals are 

i(P2) = ah 

P2 J 

(k*pj2-k2p2 d 

k2(k+pj2(k2+m2) (271)~ ' 

2 
Jlo(P2) = y 

I 

P 
d3k o 

P Q (2n13 ' 

2 
IIe(P2) - - 9 

P 
P-----+2!? d3k 

4P Q (2n)3 n 

where 

Q- k2(k2+m2) (k+p)2((k+p)2+m2] , 

PO = (k2p2-(k.p)2)(5k2+5k.p+4p2+2m2) , 

P e 
D 6k6 + 18k4k.p + 20k4p2 + 22k2(k.p)p2 

3 - 12ck.p) + 9k2p4 - 7(k*pj2p2 

+ m2(2k4 + 4k2k*p + k2p2 + (kd2). 

(C.1) 

(C.2) 

(C.3) 

(C.4) 

CC.51 

(C.6) 

Dimensional regularization was used to compute these integrals; 

e.g., the last term in Eq. (C.j) is d ue to the tadpole diagram. While 

generally care must be taken in applying dimensional regularization to 



-56- FERMILAB-Pub-85/66-T 

theories that involve the antisymmetric tensor E 
pvh ' we do not need to 

concern ourselves with such subtleties. Unlike a renormalizable theory, 

in a super-renormalizable theory such as this, any ambiguities in going 

from 3 to 3+~ dimensions will vanish smoothly as E-K). 

The resulting self energies are given in Eqs. (3.7)-(3.9). 

About zero momentum. 

(C.7) 

2 
llo(P2) - y 

7 

p2<<lS2 
i-G- 

& 37r12 
16m + 

240nm2 
t... , 

> 
((2.8) 

lle(P2) - KS- --Ai 5 13p2 
. 

p2<<,2 

m 24~ 1281~ + 480nm2 + ' '. (C.9) 

For large momenta, 

ii(p2) - - 2 1 

p2>h 2 Jp2 -16 
+-=-- -m 2 

6nJp2 32p2 
+ . . . (C.10) 

(C.11) 

lle(P2) - g2N 11 15m2 

p2>>m 2 Jp2 
-64 

+--=- 
3nJp2 

+-+... . 
64p2 > 

cc.121 

The first terms on the right hand side of Eqs. (C.10) and (C.12) agree 

with the one loop results in the massless theory, 
1,12 

as they should. 
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The discontinuities of these amplitudes can be extracted directly. 

To continue to Minkowski momenta. we take 

P2 - exp (-in)s, 

with s a positive, real number. Using 

Re &-I 
( ) 

p2_,2 _ _ n 
p2+Cf12 

7 + Ie(s-m*) , 

Re sin-f J&) = : @Cs-4m2) , 

e(s) = o or 1 for s<o or >o, we find 

Im ii = - $f 2 (l-(l-~)*eb-m*)) , 

2 
I~ no = 0(s-m ) 

8111 

Xs+*;*)(~-4m*) ecs-4m*l) 

sm 

Im IIe = 
&< ( 

1 + c _ 2 (s+7m2)(s-m2)* e(s-m2) 
2 2 2 

m 8111 

+ (s2+13 * * 
2 

sm +p2)(s-4m ) o(s-4m2) . 

sm ) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

(C.17) 

On the mass shell, 
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ile(-m2) = f& (3- F ln3) + i 2 . 

FEFXILAB-Pub-85/66-T 

(C.18) 

(C.19) 

Using the analyticity of the self energies in the cut p2 plane, 

they can be written in a dispersive form, as an integral over their 

imaginary parts along the cut. This is the form that Deser, Jackiw, and 

Templeton chose. 
5- 

II, eq. (C.12), agrees with their result, as does that 

for n o, eq. (C.13), up to an overall difference in sign for n 
0' 

our 

result for ne, eq. (C.13), does not agree with theirs. However, our Ue 

has the correct limit at large momenta, eq. (C.12). and satisfies the 

proper Ward identity on the mass shell, eqs. (6.10), (C.18), and (C.19). 

The lie of Ref. 5 does not satisfy this Ward identity: it was this that 

lead us to the labor of recomputing the self energies in the first 

place. 
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FIGURE CAPTIONS 

Fig. 1: Contributions to the glum self-energy at one-loop order. 

Solid lines denote gluons; dotted lines, ghosts. 

Fig. 2: One-loop corrections to the three-glue" vertex. 

Fig. 3: One-loop corrections to the ghost-ghost-glum vertex. 

Fig. 4: Two contributions --O(g4) to II,( In Fig. (4.b), the cross 

denotes a term for ghost wave f""cti0" renormalization, 

-O(g2/m) > from AL. 
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